References

- * Colding Minicozzi A Course in Minimal Surfaces"
- Leon Simon "Lectures on Geometric Measure Theory"
- other literature

Minimal Surface Theory

- $\cdot \sum^k \in (M^n, g)$ minimal submanifold (i.e. $\vec{H} \equiv o$)
- . minimizers & unstable critical pts to the area functional
- . existence & regularity theory
- . geometric & topological applications

The Minimal Surface Equation
$$
(Ref: CM Ch. 1)
$$

Consider the graph of a function $u: \Delta \subseteq \mathbb{R} \longrightarrow \mathbb{R}$

$$
\sum_{x_{n+1}} x_n = \{ (x, u(x)) : x \in \Omega \}
$$

$$
\sum_{x_n=1}^{x_{n+1}} u(x) = \{ \sum_{u} | x = \text{Area}(\Sigma_{u}) = \int |1 + |\nabla u|^2 dx \}
$$

Question: (Plateau) Given the value of u along $\partial\Omega$, is there a graph_u = Σu with smallest area?

Note: Such a minimizer (if exists) must be a "critical pt." of Area (Σ_u) \int_{0}^{st} derivative = 0

$$
\frac{1^{st} \text{ variation of area (Graphical)}}{\text{Let } \eta \in C_c^{\infty}(\Omega) \text{, compactly supported in } \Omega.
$$
\n
$$
\frac{d}{dt} \left| \sum_{t=0} u + t\eta \right| = \frac{d}{dt} \left| \sum_{t=0} \int \frac{1 + |\nabla(u + t\eta)|^2}{\Omega} dx \right|
$$
\n
$$
= \int_{\Omega} \frac{\nabla u \cdot \nabla \eta}{1 + |\nabla u|^2} d\chi = \int_{\Omega} div \left(\frac{\nabla u}{1 + |\nabla u|^2} \right) \eta dx
$$

If
$$
\frac{d}{dt}\Big|_{t=0}
$$
 $|\Sigma_{u+t\eta}| = 0$ $\forall \eta \in C_c^{\infty}(\Omega)$, then we have

$$
div \left(\frac{\nabla u}{\sqrt{1 + |\nabla u|^2}}\right) = 0
$$
 (MSE)
in divergence form

E.g. When n=3, (MSE) reads

 $\overline{\mathbf{C}}$

$$
(1+u_{0}^{2}) u_{xx} + (1+u_{x}^{2}) u_{yy} - 2 u_{x} u_{y} u_{xy} = 0
$$
\n
$$
a_{\text{quas}} i\text{-linear} \quad \text{elliptic} \quad 2^{\text{hol order}} \quad \text{PDE}
$$
\n
$$
2^{\text{hol order}} \quad \text{PDE}
$$
\n
$$
3^{\text{in}} = S_{ij} + u_{x_{i}} u_{x_{j}} \quad \text{linear} \quad 3^{\text{in}} = S_{ij} - \frac{u_{x_{i}} u_{x_{j}}}{1 + |\mathbf{u}_{i}|^{2}}
$$
\n
$$
(MSE) \quad \text{(a)} \quad \text{(b)} \quad \text{(c)} \quad \text{(d)} \quad \text{(e)} \quad \text{(f)} \quad \text{(f)} \quad \text{(g)} \quad \text{(f)} \quad \text{(g)} \quad \text{(h)} \quad \text{(i)} \quad \text{(j)} \quad \text{(k)} \quad \text{(l)} \quad \text{(l
$$

When coord. for X1... Xn.1 are hermonic Δ_{Σ_n} $\stackrel{x_i}{\sim}$ = 0

Q: non-graphical case?

First Variation Formula

Let $\Sigma^k \subseteq (M^n, g)$ be a smooth immersed submanifold.

$$
\Sigma_{t} = F_{t}(\Sigma)
$$
\n
$$
\Sigma_{t} = F_{t}(\Sigma) = \Sigma
$$
\n
$$
\vdots
$$
\

The Ist variation formula is

$$
\left\|\sum_{t=0}^{N} |X_t| \leq \frac{d}{dt} \Bigg|_{t=0} |X_t| = \int_{\Sigma} div_{\Sigma}(X) dV \Bigg| \qquad (*)
$$

where $dV :=$ volume measure of Σ

$$
div_{\Sigma}(\mathbf{x}) := \sum_{i=1}^{k} \langle \nabla_{\mathbf{E}_i} \mathbf{x}, \mathbf{E}_i \rangle
$$

Here: <, > =: $\frac{0}{0}$ and Levi-Civita connection ∇ on $(M, \frac{1}{0})$ EE_i , $\sum_{i=1}^{k}$ 0. N.B. of TZ.

Write $X = X^T + X^N$ $\in T\Sigma \oplus N\Sigma$, then $div_{\Sigma}(X) = div_{\Sigma}X^T + div_{\Sigma}X^N$.

$$
div_{\Sigma}X^N := \sum_{i=1}^k v_{\overline{E}_i}(x^n), E_i \rangle = -\sum_{i=1}^k v_{\overline{E}_i}(x^n, \nabla_{\overline{E}_i})
$$

$$
= -\langle X^N, \sum_{i=1}^k \nabla_{\overline{E}_i}(E_i) = -\langle X, \sum_{i=1}^k (\nabla_{\overline{E}_i} E_i)^N \rangle
$$

 Def : H_{Σ} : Σ ($\nabla_{E_i} E_i$) mean curreture vector of $\Sigma^k S M^n$

$$
(\ast) = \sum \limits_{\Sigma} (\times) = \int div_{\Sigma} x^{T} + \int div_{\Sigma} x^{N}
$$

$$
= \int div_{\Sigma} x^{T} - \int dx \cdot \vec{H}_{\Sigma} >
$$

$$
= \frac{\sum div_{\Sigma} x^{T}}{\sum div_{\Sigma} x^{T}} = \frac{\sum div_{\Sigma} x^{N}}{\sum div_{\Sigma} x^{N}}
$$

Cor:
$$
\Sigma
$$
 is 'stationary' for area among variations fixing 9Σ
\n(or compactly supported if Σ is non-cpt)
\nLet:
\n $\langle e_7^2 \rangle$
\n $\langle \Sigma(X) = 0 \quad \forall X$ vector fields along Σ et $X|_{9\Sigma} = 0$
\n $\langle \Sigma(X) = 0 \quad \langle \Sigma(X) = 0 \rangle$

Remarks: (1) (*) makes sense for "singular'
$$
\Sigma
$$
.

\n(2) Sometimes, \vec{H}_{Σ} is defined with a different sign (or normalized).

\n(3) \vec{H}_{Σ} is the negative gradient of area functional, hence gives the direction of fabext described by the equation of fabext. The equation \vec{H}_{Σ} is the direction of fabext described by the equation \vec{H}_{Σ} .

Proof of (*):
\n
$$
\frac{\text{Setup: } F: \Sigma \times (-f, f) \rightarrow M, F(:,0) = \text{given inmean form}}{\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} f(i, t)} \quad F(\Sigma, t) =: \Sigma_{t}
$$
\n
$$
X_{i, \dots, X_{k}}: \text{local good. on } \Sigma
$$
\n
$$
\frac{\text{Write: } \mathcal{G}_{ij}(t): = \langle F_{xi}, F_{x_{j}} \rangle(t) \quad \text{induced matrix on } \Sigma_{t}}{\mathcal{G}(t): = (\mathcal{G}_{ij}(t))}
$$

$$
|\Sigma_t| = \int \int \det \vartheta(t) \, dx = \int \frac{\det \vartheta(t)}{\det \vartheta(t)} \cdot \int \det \vartheta(s) \, dx
$$

$$
\frac{G_{\text{real}}: \text{ Compute } V(o) .
$$
\n
$$
At \pm so. fix \rho \in \Sigma, assume \text{ WLA } . \frac{g_{ij}(o) (p) = \delta_{ij}. Compute \text{ at } \rho \in \Sigma.
$$
\n
$$
\frac{Recall:}{dt} \frac{d}{dt} \left(\log \left(\det \theta(t) \right) = \sum_{i,j=1}^{k} \theta_{ij}^{ij}(t) \hat{g}_{ij}(t) \right)
$$
\n
$$
V(o) = \frac{1}{2} \frac{d}{dt} \left|_{t=0} \log \det \theta(t) \right| = \frac{1}{2} \sum_{i,j=1}^{k} \frac{1}{2} \sum_{j=1}^{i} \theta_{ij}(o) \hat{g}_{ij}(o) = \frac{1}{2} \sum_{i=1}^{k} \hat{g}_{ii}(o)
$$
\n
$$
= \sum_{i=1}^{k} \langle \nabla_{F_{\theta}} F_{ki}, F_{ki} \rangle = \sum_{i=1}^{k} \langle \nabla_{F_{ki}} F_{ki}, F_{ki} \rangle = \sum_{i=1}^{k} \langle \nabla_{F
$$

Examples in
$$
R^3
$$

(1) Plane

\n- totally geodarsic (ie. 2nd f.f.
$$
\overline{z}
$$
 o)
\n

D

$$
\boxed{}
$$

 ℓ

$$
(+,5) \mapsto (t \cos 5, t \sin 5, 5)
$$

$$
\sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{ij} \right)
$$

. ruled, complete, embedded

(3) Catenoid . rotationlly symmetric $x = \cosh z$ · Complete, embed ded . topo. = annulus $\rightarrow x$

Remark: Up to 1970's, these are the only known examples of complete, minimal embedded surface with finite topology in R?. There are many more , c.f. Costa - Hoffman - Meeks, Kapouleas

Q: higher dim'l examples?

" complex submanifolds" in \mathbb{C}^n

$$
\sum_{P_{1,\ldots,P_{n-k}}} := \left\{ (a_{1,\ldots, n}) \in \mathbb{C}^n \middle| P_{1,\ldots, n} \in P_{n-k} = 0 \right\}
$$

where P.,.., Pak are complex polynomials.

- Recall: Many theorems in Riem. Geom. come from 2nd vanation formula for length / energy of geode rcs. So, it's natural to look at the 2nd variation for min. submfd as well.
- 2nd Variation Formula Let $\Sigma^k \subseteq M^n$ be a min. submfd, i.e. $\overline{H}_{\Sigma} = o$. As in 1st variation, set Σ_t := F_t (Σ) generated by var. field X

Then, we have:

$$
\left|\int_{0}^{2} \Sigma(X) \cdot z \frac{d^{2}}{dt^{2}} \bigg|_{t=0} |\Sigma_{t}| = -\int_{\Sigma} \langle X, LX \rangle dV \bigg| \longrightarrow (44)
$$

where $L : T(NS) \rightarrow T(NE)$ is the "Jacobi operator":

$$
K := \Delta_{\Sigma}^{N} \times + \sum_{i=1}^{k} (R_{m_{M}}(E_{i}, X) E_{i})^{N} + \sum_{i,j=1}^{k} \langle A_{ij}, X \rangle A_{ij}
$$

Here: (i) Δ_{Σ}^{N} is the Laplaceian on NZ , i.e.

$$
\Delta_{\Sigma} \times \cdot = \sum_{i=1}^{\infty} (Q_{E_i} Q_{E_i} \times)^{n} - \sum_{i=1}^{\infty} (Q_{(Q_{E_i}E_i)^T} \times)
$$

\n(iii) $Rm_M = Riem$. Convert the tensor of (M, g)
\n(iii) $A_{ij} := (Q_{E_i}E_j)^N$ vector valued $2^{rd} f f$. f Σ
\n(iv) $(E_{1,1}, E_k) = 0.08$. f $T\Sigma$

 $Def^2: \Sigma$ is stable if $S^2(\mathsf{X})$ 20 V cptly supp. X

Note: In general, it's difficult to understand L in higher codimensions (cf. Tsai- Wang 2020) I stobel unit normal $En on $\Sigma$$ Hypersurface case $(k = n - 1)$ Assume, further, NI is trivial (ie. $\Sigma^{n-1} \subseteq M^n$ is 2-sided)

becomes a scalar operator (ie acts on functions) \Rightarrow $E_n = 3$ bleed normal Write: X = 9 En Where 9 E CC(E) $\boldsymbol{\Sigma}^{n-1} \subseteq \boldsymbol{M}^n$ Then .

$$
L\mathcal{G} = \Delta_{\Sigma}\mathcal{G} + Ric_{M}(E_{n}.E_{n})\mathcal{G} + IIAI^{2}\mathcal{G}
$$

 $hii : TE \times TE \rightarrow IR$ Remark: (i) Ric_m > 0 mm = unstable

 A_{ij} = hij E_{n}

 (i) $||A||^2$ >> 1 mm Σ unstable

On the other hand, I stable => control on IAII (sometimes even pointuree) Remarks: If Σ is compact, then L has discrete spectrum w.r.t. Dirichlet boundary condition by elliptic PDE theory. i.e. $\lambda_1 < \lambda_2 \leq \lambda_3 \leq \cdots \leq \lambda_m \leq \cdots \Rightarrow +\infty$ Def²: The Morse index of a min. submfd Σ , denoted ind Σ : $=$ # of negative eigenvalues of L (w.r.t. Dirichlet condition) $=$ $\#$ $\{ \lambda_i < 0 \}$. Note: Σ stable $\langle z \rangle$ ind $(\Sigma) = 0$ $\langle z \rangle$ $\langle \Lambda, (\bot) \rangle$